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Abstract

Itis known that forP,,, the subspace @f([—1, 1]) of all polynomials of degree at most the least
basis condition numbet~ (P;) (also called the Banach—Mazur distance beth;arzandE’g;r 1) is
bounded from below by the projection constar®fin C([—1, 1]). We show that . (P;,) is in fact the
generalized interpolating projection constan®fin C([—1, 1]), and is consequently bounded from
above by the interpolating projection constanByfin C([—1, 1]). Hence the condition number of the
Lagrange basis (say, at the Chebyshev extrema), which coincides with the norm of the corresponding
interpolating projection and thus grows lik¥&In n), is of optimal order, and fot = 2,

1.2201. .. <Ko (P2)<1.25.
We prove that there is a basiof P2 such that
Koo(u) ~ 1.24839.

This result means that no Lagrange basisPefis best conditioned. It also seems likely that the
previous value is actually the least basis condition numbégrofwhich therefore would not equal
the projection constant ¢, in C([—1, 1]).

As for trigonometric polynomials of degree at most 1, we present numerical evidence that the
Lagrange bases at equidistant points are best conditioned.
© 2004 Elsevier Inc. All rights reserved.
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1. Preliminaries

Letu := (u1,...,u,) be abasis of a finite-dimensional subspbicef a Banach space
(X, || o II). Thels-condition number of; is by definition
n . .
ko) o= sup 2=l gy el s pw. @)
acei\oy  llalleo acen (o) | 2oi=q aiuill

In approximation theory, some efforts were put into evaluating the condition number of
certain bases. In particular, Gautschi considered the power[Basiad orthogonal bases
[7] of P,, the space of all algebraic polynomials of degree at mpahd de Boor initiated
the studies of the B-spline basis condition number, which attracted a great deal of attention
(see[10,12]and references therein).

The condition number of a basisof U is pertinent not only because it characterizes, to
a certain extent, the stability of numerical computations witbut also because one can
associate ta a projectionP from X ontoU satisfying

| PlI<Koo(u). 2

Indeed, giving the basig is giving an isomorphisnT : U — (2, and by the Hahn—
Banach theorem applied componentwise, there exists a norm-preserving extengjon of
sayT X - 0. ThenP =T~ 1T is a projection fromX onto U which satisfies
IPISITHIT || = Koo (@)

Therefore, when searching for a projection with minimal norm, itis reasonable to examine
the least of these condition numbers, that is the value

Koo(U) := INf Koo(u) = inf {||T||||T‘l||, T : U — (. isomorphism},

which is known to the Banach space geometer as the Banach—Mazur distance dg¢tween
and?%,. Thus, for the (relative) projection constantldin X, defined by

pU, X) :=inf {||P|, P: X—U projection},
Eq. (2) implies the upper estimate
pU, X)SKoo(U) .

We are interested in the possibility of a deeper relation between those two constants,
in particular we wonder if equality can occur. With no further assumptions on the spaces,
the answer is clearly no. Indeed, even an inequality of the wypélU)<C p(U, X) is
wrong in general, since for exampig(5, £2) = 1 while ks (£3) = /n [14, Chapter 9].
Furthermore, Szard#t 3] showed that a much weaker |nequakgg(U)<C pU) also fails
to be true. Herg(U), the (absolute) projection constantldis, in a sense, the supremum
of the relative projection constants 0f more precisely

pU) :=sup{p@i(U), X), X Banach, i: U — X isometric embedding}.

However, if we imposeX = C (C representing ([—1, 1]) orC(T)), there is the estimate,
noticed by de Boof1, p.19],

Koo (V)< pint(U, C), 3
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where
pint(U, C) :=inf {||P||, P :C—U interpolating projection}

is the interpolating projection constant 0fin C. Let us outline the arguments. H =

> i_1e(x;)¢; is an interpolating projection (& the Lagrange basis dJ at the points

X1, ..., %, i.€. it satisfied; (x;) = 9; j), then||P| = || Y_7_1 |4|ll. On the other hand,

with s1 ands, being defined in (1), we easily find (&) = || >/ |4l ands2(£)<1.

Hencex (£)<|| P||, with equality if 1€ U, and we get (3) by taking the infimum over
So, for a finite-dimensional subspddeof C,

pU, O)<koe(U)< pint (U, €)

and an inequality of the types, (U)<C p(U, C) becomes true for subspadé®f C whose
projection constants are both of the same order. The first to come to mind are the/3paces
since in this case both constants are of o@én ). More precisely (sefb, Chapter 3]),

2 1 2
—Inn—S<pPy,C) and pint(Pr, O)<—In(n +1) + 1,
v 2 v

hence the condition number of the Lagrange basis at the Chebyshev extrema, coinciding
with the norm of the corresponding interpolating projection, is of optimal order, since it
grows like 2 In n [2].

2. Objectives

While the numerical value of the interpolating projection consiaat?,, C) is known
[2] at least up tax = 200, the projection constapi(P,, C) has only been calculatéd] in
the case: = 2. So the only available pair of exact constants is

1.2201~ p(Pa, C)<koo(P2) < pint(P2, C) = 3, 4)

Where§1 is the value of the norm of the interpolating projection at the Chebyshev extrema
—1, 0 and 1, and at some of their dilatations and shifts.
We are going to prove that there is a basisf 7P, such that

Koo(u) ~ 1.248394563,

hence the second inequality of (4) is strict, i.e. no Lagrange ba$ts isfbest conditioned.
The firstinequality of (4) seems to be strict as well, for we believe that this bésis fact
best conditioned.

To this end, let us denote y(b, ¢, d) the following symmetric basis §P»:

_x(x+Db)
==

2

—b
pa(x) = 2 =22, pax) = SED)

-1,1
> x e [-1,1],

pi(x) :
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where

b,c,d e (0, +00).

P3 P Py
7 ) b i

For example,b—lzg(b, b, 1) is the interpolating basis at the point$, 0, b.
The main part of this paper is devoted to the proof of the following statement:

Theorem 1. min koo (p(b, ¢, d)) ~ 1.248394563< 3
b,c,d>0 —

The referee pointed out to us that the latter value, provided here by theoretical means,
coincides with the value of the symmetric generalized interpolating projection consfgnt of
in C which was obtained by Chalmers and Met¢a]ffrom computational procedures. Once
we have underlined the best conditioned normalization of a basis, the equality between least
basis condition number and generalized interpolating projection constant is established, and
we finally proceed with the precise minimization of Theorém

3. Optimal normalization

We consider a basis = (u3, ..., u,) of a subspactl of a Banach spacg, | e ||), and
we denote by(uy, ..., ,) the dual basis of/*. One easily gets

n n
Ise (: 3
i=1

i=1
Hence, normalizing the dual functionals to 1, i.e. introducing the haSislefined by
No= |l llu;, i € {1,...,n}, we have s(u™) = 1 and

Zs,uu,nm

s1(u) = max

,,,,,

if X = c) ands2) = max |-

sl(ﬂ)— max < max IIH,IIX max
S
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Therefore, we derive the estimate

Koo (™) <Koo(1). (5)

4. Generalized interpolating projections

This notion was introduced by Cheney and P&} For a finite-dimensional subspace
U of C, a projectionP : C—U is said to be a generalized interpolating projection if we can
find a basist = (u1, ..., u,) of U such that the functionalg; € C* in the representation
P =Y""_1 T (e)u; have disjoint carriers. We define the generalized interpolating projection
constant ol in C by

pg.int(U, C) :=inf{||P||, P : C=U generalized interpolating projection}.

The following theorem holds (see alg Theorem 2)):
Theorem 2. For a finite-dimensional subspace U@fwe have
Koo (U) = pg.int(U, C).

Proof. Let P = )" ; 11; (e)u; be a generalized interpolating projection fréhonto U,
where the carriers of the 's are disjoint. It was established &, Lemma 9lthat

n
> N i |
i=1
n

Hence,(uy := iy - - - » 4, == Thyyy) being the dual basis af, we have]| Y7y || [||ui] |
<P, i.e. k0o (™)< P||. By taking the infimum oveP, we obtain
Koo (U) < pg.int(U, 0.

Let nowu = (uy, ..., u,) be a basis o, and let(yy, ..., u,) be the dual basis di*.
Eachy; has a norm-preserving extension to the whlghich can be written (see ed.1,
Theorem 2.13])

IPIl =

mj

o = Zdi,j o (1), mi<n, t;j € [—1,1], a;; #0.
j=1

We consider sequences of poimtéj)keN converging tor; ; and such that, for a fixed
Kk, theti’fj’s are all distinct. We sefit := PR (tl.’fj) and i := Tij,. Since
||uf||<||ﬁf.‘|| = Z’f;l loi, ;| = ll; ll, extracting a convergent subsequence if necessary,

. . L ~ 0(C*,C) ~
we can assume tha(.‘ converges in norm. The limit must he, in view of Nf o K
— 00

writing (4 - @by = (g -+ p,) Ak), we have A(k)k—> I, henceA(k) is in-
—00

vertible, at least fok large enough, and(k)‘lk—> 1. Thus, with(u’i uﬁ) =
— 00
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(w1 - up) AL, we get k@b = & ; and uf — u;. Therefore
J k— 00

pk.=3" ﬁf.‘ (o)uf is a generalized interpolating projection frahontoU and then
n n

D | 3l e |
i=1 i=1

= Koo(ﬂ)gkfoo(ﬂ)~

pgint(U,C) < lim [|PX|| = lim
k—00 k— 00

n
> gl

i=1

= lim
k— 00

By taking the infimum over, we derive

pg.int(U, C)<Koo (U).

5. Determining the first supremum
For the basip (b, c, d), it is readily seen that the first supremum in (1) is
s1:=s1(p(b, c,d)) = T?FX(IIPi,:FII[o,l]), where  pi = p1+ p2F ps.
More precisely, we have, for € [0, 1] and withC := ¢2,
1 2 I .
P+.4+(x)= i 1) x“+ C either increases or decreases with
1 5 . .
p—.+(x)= p + 1) x°— C increases with,
5 b . .
po—(x)=x"+ 5~ C increases with,

b
P4.—(x) = —x%+ Ex +C.

We get [py+lioy = max(pr+O [p++@) = max(C,|;—1+C]|) and
Ilp— + 0,11 = max(| p— (0, |p— +(1)]) = max(C, |3 + 1 - CJ), hence
1
max(p+.+ o1, 1P+ lio.a)) = max( €, = +1€ =1 ). (6)

We also have|p_ [0, = max(|p— (0, [p—— (1)) = max(C, |5 + 1 C|). Now,
if x* = %, the critical point ofp _, is in the interval[0, 1], we get ||p _[lj0,1] =

max(|p,- ()], [p+,- (D) = max(Z; + C. |4 = 1+ ), and then

b b?
max(|| p—, 0,11, 1P+, llfo,1) = maX(g +|C —1], 72 + C> . (7)
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If otherwisex* = 2 >1, we have

b
max(|| p—.- .11, | +.-llo.1) = max(C, S +HIC— 1|> : (8)
In view of (6)—(8), the following proposition holds:

Proposition 3. If b<2d, we have
max(1, b) b?
SlzmaX<T+|C—l|,m+C .

If otherwiseb>2d, we have

max(1, b)
(™

§1 = max +|C—1|,C>.

6. Reducing the minimization domain

We show in this section that only the cds€c<1 can lead to a condition number.=

Keo(p(D, c,d)) smaller than%. First, we note that the dual basis pfb, ¢, d) has the

: ; ._ C+b)
expression, forf € P, and withr* := =27,

_ d _ 32 _ 2 *
1N = sea e 0 (TCC - D+ G+ O @),

1
()= (0.

_ d _ 12 200 %
1 = s e 50 (CC— M+ b+ O ().
We will use the upper boundz := s2(p(b,c,d))>max(&, $), as we remark that

ol = & and that| iy ||>4, consideringuy (f) for f(x) = x.
(1) The casec>1.

According to Propositioi3, we separate two subcases.
(1a)The case>2d.
Sinces1>% + € — 1>C + 1, we havec>1 + £, so that we can assun@>4 in order

to getx< 3. Consequently, in view of, > max(, ¢),

> b

b
()if Z>C.  thens;>2C —1  andr>2 -

S|
NIW AT~

- b b
(ii) if C>g, thens1>25—1 andk>2 — —>

(1b) The casé<2d.
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If C>4, we obtains;>5 + 3, so thatc>1 + 3¢ >3. Hence we can assunge<4. Since
2
51245 + C andsy> max(f, 4,

b 1 b2 C 5
Vif d<2.  wegetk>——— +1>= 4+ 1>°,
Wifdsz. weget>zy7m 127 +12

b b d_C 5
i if d>—, we getk> C—- 1>-
(i) c gete= g e TPy

the latter holding becau%el + d is an increasing function mfon[ +oo) ndzﬂcg%
asC<4.

(2) The casee<1l andb>c.

On account of” <1, the point* lies in[0, 1]. This implies that

laall = (lcc =1+ w+cp?).

bC(b+2C +bC)
With b>c, we get |jy || = % = |luzll. In view of (5) and of||u,|| = % for fixedb andc,

the choiced = 1 minimizesk. Two cases have to be considered, according to Proposition
3.

b? 1_(C 1
2a) Ifb<2 th > C C —.
(2a) If b<2, enk <4+)C <4+>C 2
1.3
(2b) If b>2, thenk>(b + 1 — C)E>E —1>2.
7. Minimizing the condition number
We suppose now that<c<1, so that|uq|| = % = lluzll, where

b?+2bC 4 2C% — b*C (b+C)2+C(C—b2)
b(b+2C+bC) — (b+0C)2—C(C—-b?

A= Ab,C) =

Thus, for fixedb andc, the optimal choice ig = ; We note thab< , SO that, according
to PropositiorB, it remains to minimize, under the cond|t|on&0b<c<1 C=c?

Koo (z (b, c, %)) =max(F (b, C), G(b, C)),

where

292

b
-1 d Gb,C) :=—+ 1.
an ( ) 4C+

I+1
Fb,C) = 2F

One calculates

o)
(b% + 2bC + bZC)Za = —4C%(b + C)(b + 1)<0,
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hencel, and thereforé, decreases with. One also gets

0
(b+2C + bC)z%/D = (L— C)(b(b + bC + 4C) + 2C?%)>0,

henceb A, and therefor&s, increases with.

to infinity

F(.C)

5/4
to C/4+1

G(,C)

2/C-1
b*(C) ¢
Let us remark thai(c, C) = 1, thusF (b, C)>F(c,C) = % — 1, so that, in order to

get;c\4, we may assum€>g. Then we getF(c, C)<;1 = G(c, C), and on the other
hand, sincé (b, C) —> C,we have G(OC) = § +1 < limy o F(b, C) = +o0. There-

fore, for eachC e [9, ] there exists a uniqu*(C) e [0, ¢] such thatF (b*(C), C) =
G(b*(C),C) =: H(C), and we have

* 1 _
s (2 (070 Sy )) = O

Finally, for anyC € (g, 1), one hadd (C) = G(b*(C),C) < G(c,C) = %, which already
proves that

. 5
min Keo(p(b,c,d)) < -, sothat Kk« (P2) < pint(P2,C).
b,c,d>0 — 4

Let us now evaluate the minimal value ot (p(b, ¢, d)), i.e. the minimal value of
H on[ 1]. LetC* € [g, 1] be such thatt (C*) = minggcng(C), it must satisfy
H'(C*) = 0,becaus€*is neitherg nor 1. Now, differentiating the relatiofi(b* (C), C) =
G (b*(C), C) with respect tcC, we get, for allC e [g, 1],

, oF 0G7,, oF 9G7,,
(@ x |G~ g | 7€)+ [ 5 g | r@1.0) =

On the other hand, we have, for élle [g, 1],

! a * a *
H'(C) =b*(C) x (b (€).C)+ %(b (C), C).
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Hence, annihilating the determinant of the previous system, we concludg 't = 0 if

and only if| 53¢ — SE.57 | *(C), €) = 0. As aresultC e [§, 1] satisfiest'(C) = 0

if and only if (b*(C), C) is solution of the following (polynomial, after simplification)
system:

F(b,C)-G(b,C) = 0,
OF 0G 0F 0G
[Bmf—afa?](b’c) = 0

Using the Groebner package from Maple, one finds that this system is equivalent to

144C8 + 6498C7 + 25839 — 25108C° + 9827C*
—17192C° + 2336C2 + 1088C — 192=0

and

6068 — 906b7 — 145268 + 2261h° + 6451H%
+568b° — 3704b% — 1408b — 192 = 0,

which, in the prescribed domain, have the unique solutton~ 0.9402938300,
b ~ 0.8675381234. Computing for theseb andC gives us the value

Min_ Kkoo(p(b, ¢, d)) ~ 1.248394563.
b,c,d>0 -

8. Concluding remarks
8.1. About the assumption of symmetry

We tried to cover the case of symmetric bases completely by introducing an additional
parametea, |a|<b, and minimizing the condition number over the bases:
x+a)(x+b) (x—a)(x —b)
2d ’ 2d ’

2

p1(x) == p2(x) = —x%,  pa(x) =

x e[-1,1].

The technique is the same, though the calculations become rather more intricated: whereas,
whenb<1 andc<1, we could show theoretically that the cas€0 does not lead to any
improvement, the same conclusion foe0 was obtained numerically, using the Matlab
function fminimax. Hence if, as we believe, best conditioned bases are symmetric, it is very
likely that our optimal basis is actually the best conditioned basi®oimplying the strict
inequality p(P2, C) < Koo(P2).

8.2. About the trigonometric case

A slightly different technique, based on the determination of the norms of the dual func-
tionals via the extreme points of the unit ball Bf, can also be used. Let us note that
the description of the extreme points of the unit bali®f for anyn € N, was given by
Konheim and Rivlin9]. For 71, the space of trigonometric polynomials of degree at most
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1, this technique can also be applied, as we find easily that the extreme points of the unit ball
of 71 are the family{£1} U {sin(e — ¢), t € T}. If we trust once again the Matlab function
fminimax, we conclude, quite surpisingly, that the Lagrange bases at equidistant points are
best conditioned i, with

Koo(T1) = pint(T1,C) = 3.

Let us note that this is not the projection constan?pfn C. Indeed, it is known that the
Fourier projection front onto7, is minimal, and we easily derive

1 2J3
p(T1,C) = 3 + —‘/_ ~ 1.435991124
T
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