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Abstract

It is known that forPn, the subspace ofC([−1,1])of all polynomials of degree at mostn, the least
basis condition number�∞(Pn) (also called the Banach–Mazur distance betweenPn and�n+1∞ ) is
bounded frombelowby theprojection constant ofPn inC([−1,1]).Weshow that�∞(Pn) is in fact the
generalized interpolating projection constant ofPn in C([−1,1]), and is consequently bounded from
above by the interpolating projection constant ofPn in C([−1,1]). Hence the condition number of the
Lagrange basis (say, at the Chebyshev extrema), which coincides with the norm of the corresponding
interpolating projection and thus grows likeO(ln n), is of optimal order, and forn= 2,

1.2201. . .��∞(P2)�1.25.

We prove that there is a basisu of P2 such that

�∞(u) ≈ 1.24839.

This result means that no Lagrange basis ofP2 is best conditioned. It also seems likely that the
previous value is actually the least basis condition number ofP2, which therefore would not equal
the projection constant ofP2 in C([−1,1]).
As for trigonometric polynomials of degree at most 1, we present numerical evidence that the

Lagrange bases at equidistant points are best conditioned.
© 2004 Elsevier Inc. All rights reserved.
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1. Preliminaries

Let u := (u1, . . . , un) be a basis of a finite-dimensional subspaceU of a Banach space
(X, ‖ • ‖). The�∞-condition number ofu is by definition

�∞(u) := sup
a∈�n∞\{0}

‖∑n
i=1 aiui‖
‖a‖∞

× sup
a∈�n∞\{0}

‖a‖∞
‖∑n

i=1 aiui‖
=: s1(u)× s2(u) . (1)

In approximation theory, some efforts were put into evaluating the condition number of
certain bases. In particular, Gautschi considered the power basis[8] and orthogonal bases
[7] of Pn, the space of all algebraic polynomials of degree at mostn, and deBoor initiated
the studies of the B-spline basis condition number, which attracted a great deal of attention
(see[10,12]and references therein).
The condition number of a basisu of U is pertinent not only because it characterizes, to

a certain extent, the stability of numerical computations withu, but also because one can
associate tou a projectionP fromX ontoU satisfying

‖P ‖��∞(u). (2)

Indeed, giving the basisu is giving an isomorphismT : U → �n∞, and by the Hahn–
Banach theorem applied componentwise, there exists a norm-preserving extension ofT,
say T̃ : X → �n∞. ThenP := T −1T̃ is a projection fromX onto U which satisfies
‖P ‖�‖T −1‖‖T ‖ = �∞(u).
Therefore,whensearching for a projectionwithminimal norm, it is reasonable to examine

the least of these condition numbers, that is the value

�∞(U) := inf �∞(u) = inf {‖T ‖‖T −1‖, T : U → �n∞ isomorphism},
which is known to the Banach space geometer as the Banach–Mazur distance betweenU
and�n∞. Thus, for the (relative) projection constant ofU in X, defined by

p(U,X) := inf {‖P ‖, P : X�U projection},
Eq. (2) implies the upper estimate

p(U,X)��∞(U) .

We are interested in the possibility of a deeper relation between those two constants,
in particular we wonder if equality can occur. With no further assumptions on the spaces,
the answer is clearly no. Indeed, even an inequality of the type�∞(U)�C p(U,X) is
wrong in general, since for examplep(�n2, �2) = 1 while �∞(�n2) = √

n [14, Chapter 9].
Furthermore, Szarek[13] showed that amuchweaker inequality�∞(U)�C p(U) also fails
to be true. Herep(U), the (absolute) projection constant ofU is, in a sense, the supremum
of the relative projection constants ofU, more precisely

p(U) := sup{p(i(U),X), X Banach, i: U → X isometric embedding}.
However, if we imposeX = C (C representingC([−1,1])orC(T)), there is the estimate,

noticed by deBoor[1, p.19],

�∞(U)�pint(U, C), (3)
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where

pint(U, C) := inf {‖P ‖, P : C�U interpolating projection}
is the interpolating projection constant ofU in C. Let us outline the arguments. IfP =∑n

i=1 •(xi)�i is an interpolating projection (�is the Lagrange basis ofU at the points
x1, . . . , xn, i.e. it satisfies�i(xj ) = �i,j ), then‖P ‖ = ‖∑n

i=1 |�i |‖. On the other hand,
with s1 and s2 being defined in (1), we easily finds1(�) = ‖∑n

i=1 |�i |‖ and s2(�)�1.
Hence�∞(�)�‖P ‖, with equality if 1∈ U , and we get (3) by taking the infimum overP.
So, for a finite-dimensional subspaceU of C,

p(U, C)��∞(U)�pint(U, C)

and an inequality of the type�∞(U)�C p(U, C) becomes true for subspacesU of C whose
projection constants are both of the same order. The first to come to mind are the spacesPn,
since in this case both constants are of orderO(ln n). More precisely (see[5, Chapter 3]),

2

�2 ln n− 1

2
�p(Pn, C) and pint(Pn, C)�2

�
ln(n+ 1)+ 1,

hence the condition number of the Lagrange basis at the Chebyshev extrema, coinciding
with the norm of the corresponding interpolating projection, is of optimal order, since it
grows like 2

� ln n [2].

2. Objectives

While the numerical value of the interpolating projection constantpint(Pn, C) is known
[2] at least up ton = 200, the projection constantp(Pn, C) has only been calculated[4] in
the casen = 2. So the only available pair of exact constants is

1.2201≈ p(P2, C)��∞(P2)�pint(P2, C) = 5
4, (4)

where5
4 is the value of the norm of the interpolating projection at the Chebyshev extrema

−1, 0 and 1, and at some of their dilatations and shifts.
We are going to prove that there is a basisu of P2 such that

�∞(u) ≈ 1.248394563,

hence the second inequality of (4) is strict, i.e. no Lagrange basis ofP2 is best conditioned.
The first inequality of (4) seems to be strict as well, for we believe that this basisu is in fact
best conditioned.
To this end, let us denote byp(b, c, d) the following symmetric basis ofP2:

p1(x) := x(x + b)

2d
, p2(x) := c2 − x2, p3(x) := x(x − b)

2d
, x ∈ [−1,1],
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where

b, c, d ∈ (0,+∞).

c -b-c 

p3 p2 p1

b

For example,1
b2
p(b, b,1) is the interpolating basis at the points−b, 0, b.

The main part of this paper is devoted to the proof of the following statement:

Theorem 1. min
b,c,d>0

�∞(p(b, c, d)) ≈ 1.248394563< 5
4.

The referee pointed out to us that the latter value, provided here by theoretical means,
coincideswith thevalueof thesymmetric generalized interpolatingprojectionconstant ofP2
in C whichwas obtained byChalmers andMetcalf[3] from computational procedures.Once
we have underlined the best conditioned normalization of a basis, the equality between least
basis condition number and generalized interpolating projection constant is established, and
we finally proceed with the precise minimization of Theorem1.

3. Optimal normalization

We consider a basisu = (u1, . . . , un) of a subspaceU of a Banach space(X, ‖ • ‖), and
we denote by(�1, . . . ,�n) the dual basis ofU∗. One easily gets

s1(u) = max
ε1,...,εn=±1

∥∥∥∥∥
n∑
i=1

εiui

∥∥∥∥∥
(

=
∥∥∥∥∥

n∑
i=1

|ui |
∥∥∥∥∥ if X = C

)
ands2(u) = max

i∈{1,...,n}
∥∥�i∥∥ .

Hence, normalizing the dual functionals to 1, i.e. introducing the basisuN defined by
uNi := ‖�i‖ui , i ∈ {1, . . . , n}, we have s2(uN) = 1 and

s1(u
N) = max

ε1,...,εn=±1

∥∥∥∥∥
n∑
i=1

εi‖�i‖ui
∥∥∥∥∥� max

i∈{1,...,n} ‖�i‖ × max
ε1,...,εn=±1

∥∥∥∥∥
n∑
i=1

εiui

∥∥∥∥∥ .
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Therefore, we derive the estimate

�∞(uN)��∞(u). (5)

4. Generalized interpolating projections

This notion was introduced by Cheney and Price[6]. For a finite-dimensional subspace
U of C, a projectionP : C�U is said to be a generalized interpolating projection if we can
find a basisu = (u1, . . . , un) of U such that the functionals̃�i ∈ C∗ in the representation
P = ∑n

i=1 �̃i (•)ui have disjoint carriers.Wedefine the generalized interpolating projection
constant ofU in C by

pg.int(U, C) := inf {‖P ‖, P : C�U generalized interpolating projection}.
The following theorem holds (see also[3, Theorem 2]):

Theorem 2. For a finite-dimensional subspace U ofC, we have
�∞(U) = pg.int(U, C).

Proof. Let P = ∑n
i=1 �̃i (•)ui be a generalized interpolating projection fromC ontoU,

where the carriers of thẽ�i ’s are disjoint. It was established in[6, Lemma 9]that

‖P ‖ =
∥∥∥∥∥

n∑
i=1

‖̃�i‖|ui |
∥∥∥∥∥ .

Hence,(�1 := �̃1|U, . . . ,�n := �̃n|U) being the dual basis ofu , we have
∥∥∑n

i=1 ‖�i‖|ui |
∥∥

�‖P ‖, i.e.�∞(uN)�‖P ‖. By taking the infimum overP, we obtain

�∞(U)�pg.int(U, C).
Let nowu = (u1, . . . , un) be a basis ofU, and let(�1, . . . ,�n) be the dual basis ofU∗.
Each�i has a norm-preserving extension to the wholeC which can be written (see e.g.[11,
Theorem 2.13])

�̃i =
mi∑
j=1

�i,j • (ti,j ), mi�n, ti,j ∈ [−1,1], �i,j �= 0.

We consider sequences of points(tki,j )k∈N converging toti,j and such that, for a fixed

k, the tki,j ’s are all distinct. We set̃�ki := ∑mi
j=1 �i,j • (tki,j ) and �ki := �̃ki|U . Since

‖�ki ‖�‖̃�ki ‖ = ∑mi
j=1 |�i,j | = ‖�i‖, extracting a convergent subsequence if necessary,

we can assume that�ki converges in norm. The limit must be�i , in view of �̃ki
�(C∗,C)−→
k→∞ �̃i .

Writing (�k1 · · · �kn ) =: (�1 · · · �n )A(k), we have A(k)−→
k→∞ I , henceA(k) is in-

vertible, at least fork large enough, andA(k)−1 −→
k→∞ I . Thus, with(uk1 · · · ukn ) :=
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(u1 · · · un )A(k)
−1, we get �kj (u

k
i ) = �i,j and uki −→

k→∞ ui . Therefore

P k := ∑n
i=1 �̃ki (•)uki is a generalized interpolating projection fromC ontoU and then

pg.int(U, C) � lim
k→∞ ‖P k‖ = lim

k→∞

∥∥∥∥∥
n∑
i=1

‖̃�ki ‖|uki |
∥∥∥∥∥ = lim

k→∞

∥∥∥∥∥
n∑
i=1

‖�i‖|uki |
∥∥∥∥∥

=
∥∥∥∥∥

n∑
i=1

‖�i‖|ui |
∥∥∥∥∥ = �∞(uN)��∞(u).

By taking the infimum overu, we derive

pg.int(U, C)��∞(U).

5. Determining the first supremum

For the basisp(b, c, d), it is readily seen that the first supremum in (1) is

s1 := s1(p(b, c, d)) = max±,∓ (‖p±,∓‖[0,1]), where p±,∓ := p1 ± p2 ∓ p3.

More precisely, we have, forx ∈ [0, 1] and withC := c2,

p+,+(x)=
(
1

d
− 1

)
x2 + C either increases or decreases withx,

p−,+(x)=
(
1

d
+ 1

)
x2 − C increases withx,

p−,−(x)= x2 + b

d
x − C increases withx,

p+,−(x)= −x2 + b

d
x + C .

We get ‖p+,+‖[0,1] = max(|p+,+(0)|, |p+,+(1)|) = max
(
C,
∣∣ 1
d

− 1+ C
∣∣) and

‖p−,+‖[0,1] = max(|p−,+(0)|, |p−,+(1)|)= max
(
C,
∣∣ 1
d

+ 1− C
∣∣), hence

max(‖p+,+‖[0,1], ‖p−,+‖[0,1]) = max

(
C,

1

d
+ |C − 1|

)
. (6)

We also have‖p−,−‖[0,1] = max(|p−,−(0)|, |p−,−(1)|) = max
(
C,
∣∣ b
d

+ 1− C
∣∣). Now,

if x∗ := b
2d , the critical point ofp+,−, is in the interval[0, 1], we get ‖p+,−‖[0,1] =

max(|p+,−(x∗)|, |p+,−(1)|)= max
(
b2

4d2
+ C,

∣∣ b
d

− 1+ C
∣∣), and then

max(‖p−,−‖[0,1], ‖p+,−‖[0,1]) = max

(
b

d
+ |C − 1|, b

2

4d2
+ C

)
. (7)



52 S. Foucart / Journal of Approximation Theory 130 (2004) 46–56

If otherwisex∗ = b
2d�1, we have

max(‖p−,−‖[0,1], ‖p+,−‖[0,1]) = max

(
C,

b

d
+ |C − 1|

)
. (8)

In view of (6)–(8), the following proposition holds:

Proposition 3. If b�2d, we have

s1 = max

(
max(1, b)

d
+ |C − 1|, b

2

4d2
+ C

)
.

If otherwiseb�2d, we have

s1 = max

(
max(1, b)

d
+ |C − 1|, C

)
.

6. Reducing the minimization domain

We show in this section that only the caseb�c�1 can lead to a condition number� :=
�∞(p(b, c, d)) smaller than54. First, we note that the dual basis ofp(b, c, d) has the

expression, forf ∈ P2 and witht∗ := C(1+b)
b+C ,

�1(f )=
d

bC(b + 2C + bC)

(
−C(C − b2)f (−1)+ (b + C)2f (t∗)

)
,

�2(f )=
1

C
f (0),

�3(f )=
d

bC(b + 2C + bC)

(
−C(C − b2)f (1)+ (b + C)2f (−t∗)

)
.

We will use the upper bounds2 := s2(p(b, c, d))�max
( 1
C
, d
b

)
, as we remark that

‖�2‖ = 1
C
and that‖�1‖� d

b
, considering�1(f ) for f (x) = x.

(1) The casec�1.

According to Proposition3, we separate two subcases.
(1a)The caseb�2d.
Sinces1� b

d
+ C − 1�C + 1, we have��1+ 1

C
, so that we can assumeC�4 in order

to get��5
4. Consequently, in view ofs2�max

( 1
C
, d
b

)
,

(i) if
b

d
�C, thens1�2C − 1 and��2− 1

C
�7

4
,

(ii) if C�b

d
, thens1�2

b

d
− 1 and��2− d

b
�3

2
.

(1b)The caseb�2d.
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If C�4, we obtains1� b
d

+ 3, so that��1+ 3d
b

�5
2. Hence we can assumeC�4. Since

s1� b2

4d2
+ C ands2�max

( 1
C
, d
b

)
,

(i) if d� b

C
, we get�� 1

C

b2

4d2
+ 1�C

4
+ 1�5

4
,

(ii) if d� b

C
, we get�� b

4d
+ C

d

b
�C

4
+ 1�5

4
,

the latter holding becauseb4
1
d

+ C
b
d is an increasing function ofdon

[
b
2c ,+∞)

, and b
2c�

b
C

asC�4.

(2) The casec�1 andb�c.

On account ofC�1, the pointt∗ lies in [0, 1]. This implies that

‖�1‖ = d

bC(b + 2C + bC)

(
|C(C − b2)| + (b + C)2

)
.

With b�c, we get ‖�1‖ = d
C

= ‖�3‖. In view of (5) and of‖�2‖ = 1
C
, for fixedb andc,

the choiced = 1 minimizes�. Two cases have to be considered, according to Proposition
3.

(2a) If b�2, then��
(
b2

4
+ C

)
1

C
�
(
C

4
+ C

)
1

C
= 5

4
.

(2b) If b�2, then��(b + 1− C)
1

C
� 3

C
− 1�2.

7. Minimizing the condition number

We suppose now thatb�c�1, so that‖�1‖ = d�
C

= ‖�3‖, where

� := �(b, C) := b2 + 2bC + 2C2 − b2C

b(b + 2C + bC)
= (b + C)2 + C(C − b2)

(b + C)2 − C(C − b2)
.

Thus, for fixedb andc, the optimal choice isd = 1
� . We note thatb� 2

� , so that, according
to Proposition3, it remains to minimize, under the conditions 0< b�c�1,C = c2,

�∞
(
p

(
b, c,

1

�

))
= max(F (b, C),G(b, C)),

where

F(b, C) := � + 1

C
− 1 and G(b,C) := b2�2

4C
+ 1.

One calculates

(b2 + 2bC + b2C)2
��
�b

= −4C2(b + C)(b + 1)�0,
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hence�, and thereforeF, decreases withb. One also gets

(b + 2C + bC)2
�(b�)
�b

= (1− C)(b(b + bC + 4C)+ 2C2)�0,

henceb�, and thereforeG, increases withb.

5/4 

2/C-1 

to infinity

c 

F( ,C) 

 to C/4+1 
G( ,C)

b*(C) 

Let us remark that�(c, C) = 1, thusF(b, C)�F(c, C) = 2
C

− 1, so that, in order to
get��5

4, we may assumeC�8
9. Then we getF(c, C)�5

4 = G(c,C), and on the other
hand, sinceb�(b, C)−→

b↓0 C, we haveG(0, C) = C
4 + 1< limb↓0 F(b, C) = +∞. There-

fore, for eachC ∈ [8
9, 1

]
, there exists a uniqueb∗(C) ∈ [0, c] such thatF(b∗(C), C) =

G(b∗(C), C) =: H(C), and we have

���∞
(
p

(
b∗(C), c, 1

�(b∗(C), C)

))
= H(C).

Finally, for anyC ∈ (89, 1), one hasH(C) = G(b∗(C), C) < G(c, C) = 5
4, which already

proves that

min
b,c,d>0

�∞(p(b, c, d)) <
5

4
, so that �∞(P2) < pint(P2, C).

Let us now evaluate the minimal value of�∞(p(b, c, d)), i.e. the minimal value of

H on
[8
9, 1

]
. Let C∗ ∈ [8

9, 1
]
be such thatH(C∗) = min8

9�C�1H(C), it must satisfy

H ′(C∗) = 0, becauseC∗ is neither89 nor 1.Now, differentiating the relationF(b
∗(C), C) =

G(b∗(C), C) with respect toC, we get, for allC ∈ [89, 1],
b∗′
(C)×

[
�F
�b

− �G
�b

] (
b∗(C), C

)+
[
�F
�C

− �G
�C

] (
b∗(C), C

) = 0.

On the other hand, we have, for allC ∈ [89, 1],
H ′(C) = b∗′

(C)× �F
�b

(
b∗(C), C

)+ �F
�C

(
b∗(C), C

)
.
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Hence, annihilating the determinant of the previous system, we conclude thatH ′(C) = 0 if

and only if
[

�F
�b

�G
�C − �F

�C
�G
�b

]
(b∗(C), C) = 0. As a result,C ∈ [89, 1] satisfiesH ′(C) = 0

if and only if (b∗(C), C) is solution of the following (polynomial, after simplification)
system: F(b, C)−G(b,C) = 0,[

�F
�b

�G
�C − �F

�C
�G
�b

]
(b, C) = 0.

Using the Groebner package from Maple, one finds that this system is equivalent to

144C8 + 6498C7 + 25839C6 − 25108C5 + 9827C4

−17192C3 + 2336C2 + 1088C − 192= 0

and

60b8 − 906b7 − 1452b6 + 2261b5 + 6451b4

+568b3 − 3704b2 − 1408b − 192= 0,

which, in the prescribed domain, have the unique solutionC ≈ 0.9402938300,
b ≈ 0.8675381234. ComputingF for theseb andC gives us the value

min
b,c,d>0

�∞(p(b, c, d)) ≈ 1.248394563.

8. Concluding remarks

8.1. About the assumption of symmetry

We tried to cover the case of symmetric bases completely by introducing an additional
parametera, |a|�b, and minimizing the condition number over the bases:

p1(x) := (x + a)(x + b)

2d
, p2(x) := c2 − x2, p3(x) := (x − a)(x − b)

2d
,

x ∈ [−1,1].
The technique is the same, though the calculations become rather more intricated: whereas,
whenb�1 andc�1, we could show theoretically that the casea�0 does not lead to any
improvement, the same conclusion fora�0 was obtained numerically, using the Matlab
function fminimax. Hence if, as we believe, best conditioned bases are symmetric, it is very
likely that our optimal basis is actually the best conditioned basis ofP2, implying the strict
inequalityp(P2, C) < �∞(P2).

8.2. About the trigonometric case

A slightly different technique, based on the determination of the norms of the dual func-
tionals via the extreme points of the unit ball ofP2, can also be used. Let us note that
the description of the extreme points of the unit ball ofPn, for anyn ∈ N, was given by
Konheim and Rivlin[9]. For T1, the space of trigonometric polynomials of degree at most
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1, this technique can also be applied, as we find easily that the extreme points of the unit ball
of T1 are the family{±1} ∪ {sin(• − t), t ∈ T}. If we trust once again the Matlab function
fminimax, we conclude, quite surpisingly, that the Lagrange bases at equidistant points are
best conditioned inT1, with

�∞(T1) = pint(T1, C) = 5
3.

Let us note that this is not the projection constant ofT1 in C. Indeed, it is known that the
Fourier projection fromC ontoTn is minimal, and we easily derive

p(T1, C) = 1

3
+ 2

√
3

�
≈ 1.435991124.
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